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Abstract. The dynamic compaction of initially porous material is typically treated in continuum dynamics simulations via adjust-
ments to the scalar equation of state (EOS) of the bulk, porous material relative to that of the solid. However, the behavior during
compaction is governed by inelastic processes, as the solid material deforms, largely by shearing, to fill the voids. The resulting
response depends on the strain path, e.g. isotropic versus uniaxial loading. Adjustments to the EOS are therefore fundamentally
unsuited to describing porous compaction, and it is desirable to consider porous effects through the stress and strain tensors. We
have performed mesoscale simulations, resolving the microstructure explicitly, to guide the construction of continuum models.
These simulations allow us to study the interplay between strength and EOS in the solid, the extent of dissipative flow versus
non-dissipative displacement, and the evolution of porosity and micro-morphological features.

INTRODUCTION

A common approach to continuum modeling of porous compaction is to decouple the isotropic and deviatoric re-
sponses, using separate models to evaluate the equation of state and the shear strength. This approach can give accurate
results, even when shear work significantly affects the material pressure, but only when the experimental data used to
parameterize the continuum model is for the same mode of deformation as that for which the model will be applied.
The vast majority of high-rate material characterization is obtained through experiments that produce a 1-D uniaxial
strain shock wave, so that the Hugoniot equations can be applied to infer the material state from measurements of
the particle and shock velocities. In penetration events into brittle solids or soils, significant deformation occurs with
relatively high shear and moderate pressure, the pressure-volume response may be quite different from that observed
in uniaxial strain compaction.

To capture the effect of shear work for generalized loading it is necessary to construct a thermo-mechanical
model, in which the yield surface is a function of the stress (σ), the internal energy (u) (or temperature), and possi-
bly other history-dependent state variables (e.g., damage or porosity). When the strength depends on pressure, it is
necessary to employ a full-stress model to compute the plastic flow direction. For porous materials, the volumetric
plastic strain significantly affects both the strength and elastic properties, so it is particularly important to account for
the coupling effect.

Many full-stress thermo-mechanical constitutive models exist (cf., Fuller et al. [1] or Vorobiev [2] for geoma-
terials, Bar-on et al. [3] for ceramics, or Quidwai et al. [4] for porous shape memory alloys). Such models have the
potential to be highly predictive over a broad range of loading regimes, but have many input parameters requiring
significant experimental paramterization. In many cases, analysts will use unrealistically simple models when the data
needed to properly use a more sophisticated model is impractical to obtain. Analysis of mesoscale simulations has
the potential provide virtual data that can be used for model parameterization, reducing the need for experiments
and in many cases providing data for loading modes that are difficult to characterize experimentally. This is partic-
ularly true for granular and porous materials where much of the bulk material response is governed by evolution of
micromorphology, and where the response of the solid phase is relatively well characterized.

High-rate materials characterization typically involves experiments that have been designed to achieve a steady
1-D shock, so that the Rankine–Hugoniot conditions can be applied to calculate the pressure and density from the



FIGURE 1. Simulation geometry: (a) uniaxial strain powder compaction (b) axisymmetric radial compaction.

observed particle and shock velocities [5]. In recent years, several researchers have demonstrated that mesoscale
models can reproduce the Hugoniot data for shock experiments on granular and porous materials [6, 7].

While matching experimental results is a necessary validation, the great value in mesoscale simulation is that
a wealth of information about the dynamic material state becomes accessible, without the limitations of traditional
experimentation. Averaged values for the pressure (p̄), density (ρ̄), and internal energy (ū) can be obtained for a region
of the mesocale domain, without requiring the existence of a steady-state shock. Because of this, it is possible to design
experiments that probe a broad range of states in the ρ − u − p space. In contrast, traditional experimental methods
provide only a single point on the Hugoniot curve for a given material.

In designing mesocale simulations, it is tempting to prescribe a uniform initial velocity gradient with compatible
Dirichlet boundary conditions, in order to obtain a desired loading path for the material. However, for high-rate loading
of heterogenous materials, particularly those for which the density varies significantly between the constituents, this
approach is flawed. In actual high-rate loading, the effect of a shock front causes micro-kinetic effects that may produce
significant distortion of individual grains, and a corresponding contribution to the thermal pressure in the material. In
contrast, a high rate loading with an initially uniform velocity field produces a self-similar deformation, dominated by
inertial effects, with significantly less grain-scale distortion [8].

The challenge is then to define a mesoscale simulation that probes a wide range deformation states while locally
deforming that material with a shock front (rather than a prescribed deformation). Furthermore, it is desirable to
control of the strain rate, the initial and final compaction, and the relative amount of shear vs. volumetric loading. To
this end we have explored the use of mesoscale simulation of a powder compaction using a configuration similar to the
thick-walled cylinder collapse, used by Nesterenko to study shear banding formation and deformation of pre-fractured
ceramics [9].

METHODS

Mesoscale simulations use GEODYN, an Eulerian hydrocode with high-order interface reconstruction and a mod-
ified Godunov scheme. This method has been demonstrated to accurately resolve shock loading and it accurately
(by-construction) conserves energy [10], which is essential when extracting equation of state response from the simu-
lation results. Previous work by Lomov, et al. [6] demonstrated that 3-D mesoscale analysis of porous compaction of
aluminum using GEODYN could reproduce experimental results for 1-D shock loading.

We simulate compaction of a packed bed of spherical copper particles with a solid volume fraction 0.6271. The
particle diameter ranges from 297.0µm to 420.0µm, with a mean of 358.5µm. The particle packing is produced with
the SnowNinja discrete element method (DEM) code. The solid phase is modeled with a Mie-Gruneisen equation
of state and a Steinberg-Guinan model for the dependence of strength on pressure and temperature. The initial solid
density is 8.93mg/mm3.

For this analysis we consider two loading scenarios as shown in Fig. 1. The first is a uniaxial strain with a
rectangular incident bar with length li = 40mm and initial velocity vi = 0.375mm/µs impacts a powder bed of length
ls = 7mm followed by a transmission bar of length lt = 7mm. The cross section is square with width wi = 7mm.

The second geometry is an axisymmetric radial compaction; the geometry is a 1/4 annular bed of 8305 packed
spheres, with an inner diameter, outer diameter and height of 3.18mm, 11.1mm, and 3.585mm, respectively. The



FIGURE 2. (a) Bulk radial motion r(r0, t) for TWC compaction, with the initial compaction highlighted in green. (b) Contours of
pressure during the initial compaction.

collapse is driven by the expansion of an energetic material, which is modeled as an ideal gas with initial density
ρ0 = 1.0mg/mm3, and initial energy density u0 = 1.5J/mm3. The model geometry and particle size were selected
based on experimental results for porous compaction in a thick-walled cylinder geometry, in an effort to avoid shear
band formation, so the particle bad can be treated as a continuum.

To extract the history of a Lagrangian volume from the Eulerian simulation results, we define a mapping r(r0, t)
to characterize the homogenized bulk radial motion. A set of Lagrangian markers are defined, which are initially at
the centers of 200 randomly selected particles. The location of these markers is updated explicitly throughout the
simulation. The average radial motion is then fit to a time-history of the markers. This implicitly defines the bulk
material motion as that of the particle ensemble, essentially neglecting the effect of any air displacement relative to
the particles during consolidation.

In constructing the radial motion from the marker data, it is desirable to obtain a smooth function r(r0, t) that
represents the bulk continuum motion so that the spatial and temporal gradients can be used to analyze the kinematics.
Point-to-point variations in the marker data preclude a simple interpolation of the raw data, so we first resample the
data with local averages at a uniform radial spacing, and then construct a piecewise Hermite interpolation of the
resampled points. The bulk radial motion is plotted in Fig. 2a.

For some spatially varying field f (r, θ, z, t) (e.g., the pressure, density, internal energy etc.), the nominal con-
tinuum value f̄ (r, t) is computed by a volume average over a quarter annulus subregion of the powder volume. The
averages are computed using VisIt, which accounts for the varying mesh density with adaptive mesh refinement. In
defining these average values over some portion of the domain, the size of the averaging region relative to that of
the shock front can affect the computed result. It is desirable to have the domain be as small as possible, to avoid
significant variations in the nominal pressure across the region, while also having the domain be large enough that
point-to-point variations do not introduce significant noise. For our simulations, a smooth representation of the density
and pressure fields could be obtained when the slice thickness was at least 1/2 particle diameter. Increasing the height
of the simulation domain would allow for improved spatial resolution by reducing noise due to local variations.

We rotate the local stress based on its current position and compute a volume average of the radial, circumfrential
and axial stresses over the annular regions. During the initial compaction stage, the shear stress increases monoton-
ically and the plastic deformation front is coincident with the pressure wavefront. This suggests that the stress is on
the yield surface throughout the initial compaction phase, so the shear stress can be interpreted as a shear strength τY ,
which can be expressed as a function of ρ̄ and ū. For a radial motion, the principal directions are r, θ, and z, so the
deformation in the cylindrical reference frame is a pure stretch with F = DIAG(Frr, Fθθ, Fzz). From the radial motion
we have

Frr(r0, t) =
∂r(r0, t)
∂r0

(1)

With symmetry enforced on the +z and −z faces, Fzz = 1, so with ρ̄J = ρ̄0, and J = det F,

Fθθ(r0, t) =
ρ0

ρ(r0, t)
1

Frr(r0, t)
. (2)



FIGURE 3. Pressure in the 1d bar from averages of slices of the domain normal to the wave propagation. The dashed line shows
the pressure computed from the particle and shock velocities. (top) Pressure vs. density and internal energy for the thick-walled
cylinder powder compaction and a 1-D uniaxial strain powder compaction, shown relative to the solid EOS. (center) Dependence
of shear strength on density and internal energy during the initial compaction phase of the TWC. (bottom)

The time dependence of F also lets us compute the strain rates applied to the bulk simulation. For the TWC simu-
lation, using a Lagrange strain measure, the peak strain rate depends on radius and ranges from 1 × 105 to 1 × 106s−1,
however this range is approximate since calculation of the strain rate is sensitive to noise in the fit to the radial motion.
By varying the intensity of the explosive, it is possible to achieve a broad range of strain rates, and thus to characterize
the effect of strain rate on the ρ̄ − ū − p̄ behavior.

The material is unloaded upon the arrival of the release wave from the the stopper tube. Using the rates of the
deformation gradient and the averaged stresses, we obtain a value for the elastic tangent properties at this state. Since
the pressure and density vary radially at the point of unloading, this provides elastic properties for a range of states.
The unloading response can be seen more clearly by using a thick, low-impedance stopper tube. However, for this
analysis, the radial motion field was too noisy to obtain meaningful results for the elastic properties.

To provide a metric for estimating the error in the bulk continuum motion, we can compare the spatially averaged
density field with that computed from the kinematics, ρ(r0, t) =

ρ̄0r0
r(r0,t)

/
(
∂r
∂r0

)
t
. For the TWC simulations, the results

compare well during the initial compaction phase, but there is significant error at the inner radius after unloading and
during the subsequent collapse and reshock.

A second error metric, which is more sensitive to the temporal gradient of the radial motion, is the comparison
of the rate of internal energy computed from the spatial averages compared to the computed stress work. Neglecting
the kinetic energy effect, and in the absence of a source term, the change in internal energy for adiabatic deformation
is the stress power, u̇ = P : V̇ = 1

ρ0
t : Ḟ, where t is the first Piola-Kirchoff stress t = Jσ ·F−T . Both methods generally

agree well, indicating there is consistency in the calculation of stress, density, and motion, and internal energy, but
there is a clear discrepancy at the shock front.

Several methods are available to reduce the analysis error, (i) increase the the height of the computational domain
to smooth point-to-point fluctuations and allow a decreased radial slice width, (ii) increase the mesh resolution to
reduce the fraction of mixed cells, (iii) increase the number of Lagrangian markers to better capture the radial motion,
(iv) improve the construction of the radial motion field from Lagrangian markers to eliminate noise while preserving
key features. The density and energy rate metrics provide a means to assess convergence, which is important since
each of these approaches comes with an increase in computational expense.

RESULTS

The 1-D porous compaction simulation is analyzed to compare the results from spatial averages over slices normal
to the wave propagation direction to those obtained using a conventional impedance matching analysis. Interpreting
the Eulerian field velocity as the particle velocity up(x), we then solve for the shock velocity us that minimized the
standard deviation in the aligned shock fronts up(x−ust). Computing the initial density ρ̄0 from volume averages over
the initial domain, we then compute the Hugoniot pressure as p? = ρ̄0usup. Figure 3a shows the pressure from spatial
averages at various times in the simulation, which agrees reasonably well with the Hugoniot pressure. The discrepancy
is likely due to boundary effects.

The ratio of the specific volume V to the initial specific volume V0 is computed from the velocities V/V0 =



1 − up/us, which is used to compute the Hugoniot density, ρ? = ρ̄0V0/V . With these values we then compute the
volumetric internal energy u? = 1

2ρ
?p?(V0 − V). The spatially averaged data for p̄, ρ̄, and ū from the 1-D compaction

data trace a curve in state space as shown in Fig. 3b. The Hugoniot point [ρ?, u?, p?] is plotted along with this data,
and falls on the line. This provides verification for the analysis method and confirms that the spatial averaging of the
Eulerian fields gives a result consistent with a traditional shock analysis.

Figure 2b shows contours of pressure during the initial porous compaction of the TWC collapse. The initial
porous compaction shows a sharp shock front, but there are significant point-to-point variations in the stress field. A
release wave initiates at the outer surface of the low-impedance stopper tube unloading the material. Once this wave
hits the outer surface of the particle bed, the reflection recompresses the material. This occurs as the core collapse,
along with high shear flow near the inner radius of the powder bed. Once the core collapses completely, a high pressure
wave propagates outward, followed by a radial expansion. The stresses in this final stage are much higher than during
the porous compaction, which points to the need for dynamic, in-situ experimental validation of the initial dynamic
response, since a post-mortem analysis could be significantly hindered by this post-compaction deformation.

Figure 3b shows the pressure for each radial slice of the TWC domain versus density and internal energy, along
with the results from the 1-D compaction simulation. The equation of state of the solid material is plotted for reference.
The results show a very significant effect of shear deformation on the overall response, with the pressure at a given
density increasing (by a factor of ≈ 2) towards the inner radius of the particle bed.

Shear strength during porous compaction is plotted in Fig. 3c, showing that for a given density the shear strength
increases with internal energy, most significantly as the density approaches the solid density. The solid phase softens
as the internal energy is increased, but the solid also expands so that for a given bulk density, the material with the
higher internal energy as a lower porosity. Thus, the results indicate that for this material the geometric effect due to
thermal expansion dominates the thermal softening effect in the solid material.

DISCUSSION AND CONCLUSION

The results show that the effect of shear work is significant on the p − ρ response, and should be taken into account
when developing continuum constitutive models for porous materials. The use of 1-D shock loading experiments to
parameterize the equation of state response for granular (or more generally, for highly porous materials) is therefore
only sufficient when the model is to be used for a region of the computational domain that will be subjected to a 1-D
uniaxial strain shock. While this mode of deformation may dominate for material subject to blast loading far from the
energetic source, it would not adequately approximate the loading state in a penetration event.

However, simply showing that the shear work produces a non-negligible thermal pressure is not sufficient to
show that a full-stress model is needed. An iterative decoupled model would still produce increase plastic work and
associated thermal pressure in shear loading relative to hydrostatic compression. It will be necessary to reproduce the
mesoscale result with a continuum simulation to understand how details of the constitutive model’s numerical solution
affects the macroscale response. In this way the mesoscale results can guide the development of more predictive
continuum models.

This approach can be extended to investigate the porous compaction response of a variety of materials with
varying mechanical properties and morphologies. A key limitation will be avoiding radial shear localization, which
would break axisymmetry and would invalidate the continuum analysis. Experimental work[9] has shown that shear
banding will occur for fine particles, but it is not clear from available experimental results whether this initiates during
the porous compaction stage, or in the subsequent shear-flow as the stopper tube collapses.

Extending the method to brittle materials will require a treatment of fracture, comminution, and frictional dissi-
pation, which can be difficult to capture with an Eulerian approach. Lagrangian codes can more accurately described
contact and fracture, but do not tolerate extreme deformation. A variety of ALE, particle, and meshless methods exist,
but each has its limitations with regards to multiple phases, contact, fracture, energy conservation, and robustness.
Moving forward it will be necessary to conduct in-situ validation of the TWC dynamic response during compaction
to ensure that the numerical method is adequately describing the physical system.

Mesoscale simulation of axisymmetric radial compaction of a powder bed has been shown to produce data for
the equation of state and strength over a wider range of states than a corresponding 1-D compaction simulation. This
reduces the number of simulations needed to parameterize a constitutive model, which makes it practical to employ
sophisticated numerical methods and constituent constitutive models with a sufficient resolution to resolve the fine
scale deformation over domains of thousands of particles.
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